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Analytical Solution to the Lipari–Szabo Model Based on the Reduced
Spectral Density Approximation Offers a Novel Protocol

for Extracting Motional Parameters
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An analytical solution to the Lipari–Szabo model is derived for
isotropic overall tumbling. The parameters of the original Lipari–
Szabo model, the order parameter S2 and the effective internal
correlation time τe, are calculated from two values of the spectral
density function. If additionally the spectral density value J(0) is
known, the exchange contribution Rex term can also be determined.
The overall tumbling time τc must be determined in advance, for
example, from T1/T2 ratios. The required spectral density values
are obtained by reduced spectral density mapping from T1, T2, and
NOE measurements. Our computer simulations show that the re-
duced spectral density mapping is a very good approximation in
almost all cases in which the Lipari–Szabo model is applicable. The
robustness of the analytical formula to experimental errors is also
investigated by extensive computer simulations and is found to be
similar to that of the fitting procedures. The derived formulas were
applied to the experimental 15N relaxation data of ubiquitin. Our
results agree well with the published parameter values of S2 and
τe, which were obtained from standard fitting procedures. The an-
alytical approach to extract parameters of molecular motions may
be more robust than standard analyses and provides a safeguard
against spurious fitting results, especially for determining the ex-
change contribution Rex. C© 2001 Academic Press

Key Words: high-resolution NMR; 15N relaxation; spectral
density mapping; order parameter; chemical exchange; protein
dynamics.
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INTRODUCTION

One of the strengths of NMR is its ability to study the dynam
behavior of molecules in solution at an atomic level (1, 2). Two
different approaches currently exist for addressing motions
very different time scales. Motions on slow time scales (seco
to years) are investigated by1H/2D-exchange of exchangeab
protons, whereas faster motions (picoseconds to milliseco
are studied by measurement and evaluation of nuclear spi
laxation rates mainly of15N, 13C, or2H nuclei (3–5). Although
measurement of1H relaxation is in principle possible, quantita
tive interpretation is usually hampered by the multitude of rel
ation pathways that exist for protons. For the interpretation of
experimental relaxation rates in terms of microscopic parame
31090-7807/01 $35.00
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of motion a generalized model, often called the “model-free
proach,” was presented by Lipari and Szabo in 1982 (6, 7). In this
model motions of a molecule are separated into the overal
tational reorientation and additional internal motions, which
described by one amplitude (order parameterS2) and one time
scale (internal effective correlation timeτe), respectively. The
Lipari–Szabo model is not based on a specific physical mo
(hence the name model-free) and therefore the Lipari–Sz
parameters represent only the simplest generalized descri
of internal motions. To translate these generalized parame
into specific physical observables a physical model (for exa
ple, wobbling in a cone) must be invoked (8). The Lipari–Szabo
model can be extended to incorporate anisotropy of the ove
tumbling of a molecule (9). However, Schurret al. (10) have
shown by computer simulations that for moderate anisotr
(σ <2.0) neglecting anisotropy does not affect Lipari–Sza
parameters much. Experimentally, differences between isotr
and anisotropic analysis were also found to be small for mo
ate anisotropy (11, 12). In the original articles Lipari and Szab
presented a simple analytical solution to their model provid
internal motions are in the “extreme narrowing” limit (6). In
the general case fitting procedures are proposed to deter
parameter values that optimize agreement between meas
relaxation rates and rates calculated from the model. The
ability to invert the Lipari–Szabo model has been implied in
applications and has even been stated explicitly (2, 13). How-
ever, due to its simplicity the Lipari–Szabo model has been v
successful for interpretation of15N, 13C, and recently also of2H
relaxation rates (14–19).

Only more recently was a truly model-free approach,
“full spectral density mapping,” developed by Peng and Wag
(20, 21). In this approach additional relaxation experiments
introduced to determine the spectral density values at five
quencies. The spectral density at high frequencies was foun
be small. Based on this observation 3 years later the “redu
spectral density mapping” method was developed by Far
et al. (22) and a similar approach was reported by Ishima a
Nagayama (23). The methods rely on the approximations
the high frequency values of the spectral density. The redu
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ANALYTICAL SOLUTION OF

spectral density mapping approach allows the determinatio
spectral density values from measuredT1, T2, and NOE data
alone. The validity of the reduced spectral density mapping
proximation was confirmed by full spectral density mappi
(24). The main application of this approach has been on15N
relaxation rates of15N enriched proteins (25–27).

We show in this contribution that when the Lipari–Sza
model is applicable the reduced spectral density approxima
works very well over a much larger range of Lipari–Szabo p
rameter values than those expected so far. The main focus o
study is on an analytical solution of the original isotropic Lipar
Szabo model with two adjustable parameters,S2 andτe, and a
given overall correlation timeτc. Formulas are derived that allow
calculations ofS2 andτe from two (arbitrary) valuesJ(ω1) and
J(ω2) of the spectral density function. The application of the
formulas to spectral density valuesJ(ωN) and J(0.87ωH) ob-
tained by reduced spectral density mapping is proposed for
culating order parameterS2, effective internal correlation time
τe, and possible exchange contributionsRex from data obtained
by standard15N relaxation measurements at one field streng
i.e., longitudinalT1, transverseT2, and heteronuclear15N{1H}
NOE,without the need of fitting procedures. Using J(0) allows
simple calculation ofS2 andτe values. However, measuremen
at several field strengths are required to determineJ(0) values
that are not affected by exchange (28). We propose to useJ(ωN)
and J(0.87ωH) so that exchange broadening and experimen
difficulties affectingT2 measurements (as described in Ref. (29)
and references therein) do not affect the determination ofS2 and
τe. The range of validity and the robustness against experime
errors are tested by extensive computer simulations. Previo
published relaxation data for the protein ubiquitin (11) are used
to compare the results from our analytical formulas with tho
from common fitting procedures. Although we focus mainly
15N relaxation of proteins, the approach derived herein is
plicable whenever at least two values of the spectral den
function can be determined.

THEORY

The Lipari–Szabo model.The experimentally accessible re
laxation ratesT1, T2, and NOE are functions of the spectral de
sity J(ω) at various frequenciesω (30). As the formulas for
T1, T2, and NOE contain five spectral density values, a dir
inversion of the equations is not possible. In the Lipari–Sza
approach a model function forJ(ω) with only two adjustable
parameterS2 andτe is assumed (6):

J(ω) = 2

5

(
S2τc

1+ ω2τ 2
c

+ (1− S2)τe

1+ ω2τ 2
e

)
. [1]

The effective internal correlation timeτe is connected to the
internal correlation timeτi by 1/τe = 1/τi + 1/τc. The overall

correlation timeτc is the same for the whole molecule and
usually determined fromT1/T2 ratios (11, 14). In the extreme
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narrowing limit, i.e., whenω2τ 2
e ¿ 1, the second term of the

Lipari–Szabo model function can be approximated by (1−S2)τe

(6). In this case, analytical expressions forS2 andτe are obtained
immediately:

S2 = 5

2
(J(ω1)− J(ω2))

(
τc

1+ ω2
1τ

2
c

− τc

1+ ω2
2τ

2
c

)−1

. [2]

Computer simulations, as described below, indicate that us
ω1 = 0.87ωH andω2 = ωN (reduced spectral density mapping
this approximation gives good results for 0.87ωH τe < 0.6, e.g.,
for τi < 200 ps at 600 MHz proton frequency (unpublished re
sults). Forτi > 200 ps the approximation (Eq. [2]) is no longe
valid.

Reduced spectral density mapping.The spectral density
function J(ω) has small values forω = ωH (1H angular spin
precession frequency) as shown by Peng and Wagner (20, 21)
and Lefèvre et al. (24). Therefore, it can be assumed that i
varies only little in the vicinity ofωH. In the reduced spectral
density approach the spectral density valuesJ(0), J(ωN), and
J(0.87ωH) are calculated from the15N T1, T2, and NOE using
the approximationJ(ω) ∝ 1/ω2 for ω = ωH ± ωN (22):

J(0.87ωH) =
(

4

5d2

)(
γN

γH

)
(NOE− 1)

T1

J(ωN) = 1

T1

(
1− 7

5

γN

γH
(NOE− 1)

)/(
3d2

4
+ c2

)
J(0) =

(
1

T2
− 1

T1

(
1

2
+ 3

5

γN

γH
(NOE− 1)

))/
×
(

d2

2
+ 2c2

3

)
, [3]

with c andd as in Farrowet al.(22): c2 = ω2
N(σ| − σ⊥)2/3, d =

(µ0γHγNh/(8π2))/<1/rNH
3 > (d2/4 ≈ 1.3 109 s−2, c2 ≈ 0.9

109 s−2 at 500 MHz proton frequency) where symbols have the
usual meanings.

Derivation of the analytical solution.ω1 andω2 are defined
as two frequencies for which the spectral densityJ(ω) is known.
S2, τc, τe, andRex are Lipari–Szabo parameters as before. Defi
ing C(ω) = 2.5 J(ω)(1+ω2τ 2

c ) we obtain for the Lipari–Szabo
model

C(ωi )
(
1+ω2

i τ
2
e

)= [S2τc
(
1+ω2

i τ
2
e

)+ (1− S2)τe
(
1+ω2

i τ
2
c

)]
.

[4]

Settingωi =ω1 and adding on the left side

2 2 2 2 2 2 2 2 2 2 2 2
is
S ω2τcτe + (1−S )ω2τc τe−S ω2τcτe − (1−S )ω2τc τe=0,

[5]
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one obtains after rearrangement of the terms and applicatio
Eq. [4] withωi = ω2

C(ω1)
(
1+ ω2

1τ
2
e

) = C(ω2)
(
1+ ω2

2τ
2
e

)
+ τcτe

(
ω2

1 − ω2
2

)
[S2(τe− τc)+ τc]. [6]

Equation [4] withωi = ω2 is solved forS2(τe− τc) and inserted
in Eq. [6]. After some algebra one obtains

C(ω1)
(
1+ ω2

1τ
2
e

) = C(ω2)
(
1+ ω2

2τ
2
e

) [
1+ τcτe

(
ω2

1 − ω2
2

)
ω2

2τcτe− 1

]

− τcτe
(
ω2

1 − ω2
2

)
(τe+ τc)

ω2
2τcτe− 1

. [7]

Multiplication withω2
2τcτe− 1 yields an equation of third orde

in τe,

τ 3
e [C(ω1)− C(ω2)]ω2

1ω
2
2τc+ τ 2

e

[
C(ω2)ω2

2 − C(ω1)ω2
1

+ τc
(
ω2

1 − ω2
2

)]+ τe
[
C(ω1)ω2

2τc− C(ω2)ω2
1τc

+ τ 2
c

(
ω2

1 − ω2
2

)]+ C(ω2)− C(ω1) = 0. [8]

J(0.87ωH) andJ(ωN) can be calculated with the reduced spect
density approach fromT1 and heteronuclear NOE. Forω1 and
ω2 one inserts 0.87ωH andωN and obtainsτe as the solution
of Eq. [8] that lies between zero andτc. It is important to note
that Eq. [8] is valid for allτe if the dependence ofC(ωi ) on τe

is taken into account. In our approach we determineC(ωi ) from
experimental relaxation rates and consider them constant in
search for aτe that fulfils Eq. [8]. Only with constantC(ωi ) does
Eq. [8] represent a third-order equation forτe. A general proof
of the existence of a unique solution is hampered by the
that theC(ωi ) have few general properties that can be exploi
for such a proof. However, we have investigated this probl
with computer simulations covering all possible Lipari–Sza
parameter combinations and have obtained in all cases a un
solution, thus providing empirical evidence that always exac
one solution to Eq. [8] is found (for details see the Support
Information).
Using again Eq. [4],S2 can be calculated as

S2 =
[
C(ω2)

(
1+ ω2

2τ
2
e

)− τe
(
1+ ω2

2τ
2
c

)]
(τe− τc)

(
ω2

2τcτe− 1
) . [9]

J(0) calculated with the reduced spectral density mapp
(Eq. [3]) depends onT2 and therefore contains the exchan
contributionRex,

Rex =
[

J(0)− 2

5
(S2τc+ τe− S2τe)

]
(d2/2+ 2c2/3). [10]
It has been assumed several times in the derivation of the ab
ER, AND HOLAK
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equations thatω2
2τcτe − 1 6= 0. This is no restriction onω2

as the derivation and final solution are completely symmetri
with respect toω1 andω2. Therefore,ω2 can always be chosen
appropriately (ωN or 0.87ωH), so thatω2

2τcτe− 1 6= 0 is fulfilled.
Usually J(ωN) is known to higher precision thanJ(0.87ωH) so
that it is recommendable to useω2 = ωN, if possible.

In the presence of moderate anisotropy order parametersS2

and internal correlation timesτi remain largely unaffected (10,
11), thus justifying the application of Eqs. [8]–[10]. The ex
change contributionRex, however, is dependent on anisotrop
of the overall tumbling (11, 27). Therefore, Eq. [10] must be
replaced by

Rex =
{

J(0)− 2

5

[
S2

5∑
n=1

Anτn + (1− S2)τe

]}
× (d2/2+ 2c2/3), [11]

with the An andτn defined by the fully asymmetric diffusion
tensor (11). τe is in this case calculated as 1/τe = 5/τ1+5/τ2+
5/τ3+ 5/τ4+ 5/τ5+ 5/τi .

COMPUTER SIMULATIONS

SyntheticT1, T2, and NOE data were generated random
at proton frequencies of 500 and 600 MHz for 10,000 virtu
15N nuclei (assuming one attached proton as in the prot
backbone). From homogeneously distributed random numb
X(1), X(2), X(3) ∈ [0, 1], (P(X) = const.) order parameters
S2, internal correlation timesτi , and exchange contributions
Rex were calculated as follows:S2 = 0.9–0.8∗ X(1)2, τi =
0.7∗ X(2)∗ 104X(2) ps, Rex = X(3)2 ∗ 10 Hz. The effective in-
ternal correlation timeτe is given by 1/τe = 1/τi + 1/τc. The
isotropic Lipari-Szabo model with a constant overall correlatio
time τc of 7.0 ns was used to generateT1, T2, and NOE values.
From the spectral densities obtained by Eq. [1]T1, T2, and NOE
at magnetic field strengths of 500 and 600 MHz proton frequen
were calculated with the well-known formulas (14–17). Para-
meter combinations that resulted inT1 times longer than 5 s
were discarded (9 cases of 10,000). For the test of the analyt
solution Gaussian noise with a standard deviation of 1, 3, a
5% was added to the relaxation rates resulting in three differ
data sets, each comprisingT1, T2, and NOE values at two field
strengths for 9991 virtual nuclei.

Testing of the reduced spectral density mapping approxim
tion J(ω) ∝ 1/ω2 for ω = ωH ± ωN, as proposed by Farrow
et al. (22), was performed using a noise-free data set.J(0) was
not calculated according to Eq. [3], but using Eqs. [19] and [2
of Farrowet al. (22) because exchange contributionsRex were
present in our syntheticT2 values.

Tests of the analytical solution were performed on the da
ove
sets containing 1, 3, or 5% Gaussian errors.J(0), J(ωN), and
J(0.87ωH) were calculated with Eq. [3] fromT1, T2, and NOE
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at one field strength. The overall correlation timeτc was set to 6.5
(too short), 7.0 (correct), and 7.5 ns (too long) in different cal
lations to investigate the influence of error in theτc value on the
resulting Lipari–Szabo parameters. FromJ(ωN) andJ(0.87ωH)
the effective internal correlation timeτe was determined as th
solution of Eq. [8] that lies between 0 andτc. If no solution was
found in this range, we decreased the lower limit from zero
−10 ps because statistical errors can shift the solution of Eq
to small negative values. In all the simulations for everyT1, T2,
NOE triple a solution to Eq. [8] could be found between−10 ps
andτc. The order parameterS2 was calculated using Eq. [9]
and the exchange contributionRex was then determined from
J(0), S2, andτe using Eq. [10]. It should be emphasized that t
appearance of negative times is only due to errors present in
T1 and NOE values and negativeτe should be replaced by zer
(after calculation ofS2 andRex).

We found for all three simulated cases that NOE values hig
than the theoretical maximum lead to strong overestimation
τe and subsequently often toS2 values>1 or<0. Therefore, we
used the theoretical maximum for the NOE in all our calculatio
whenever the NOE value (caused by experimental error)
higher than the field-dependent maximum.

RESULTS

Unless stated otherwise, all calculations were performed
ing the15N T1, T2, and hetNOE values calculated for a prot
frequency of 600 MHz. Figure 1 shows good agreement
tween spectral densities values obtained from15N T1, T2, and
hetNOE using the reduced spectral density approximation
the true spectral densities that were used to generate the15N
T1, T2, and hetNOE data. Even in cases of high mobility, as
dicated by largeJ(0.87ωH) and smallJ(0) values, almost no
visible deviations from the straight liney = x can be seen. The
relative deviation of the back-calculated spectral densities fr
the original ones averaged over the whole data set of 9991
tual residues is given in the first column of Table 1. Excludi

TABLE 1
Relative rmsd between Spectral Densities Calculated with the Re-

duced Spectral Density Mapping Approximation and True Values
(=100%∗ (Japprox/Jtrue − 1)) Averaged over Subsets of the Whole
Data Set Comprising 9991 Virtual Residues

Rel. rmsd Alla S2 > 0.5b S2 > 0.7c Max.d

J(0) 0.50% 0.11% 0.05% 5.6%
J(ωN) 0.83% 0.24% 0.13% 7.2%
J(0.87ωH) 0.19% 0.17% 0.15% 0.8%

a See Computer Simulation for the generation of the data set of 9991 vi
residues.

b Data generated withS2 < 0.5 are excluded from averaging.
c 2
Data generated withS < 0.7 are excluded.
d For all spectral densities the maximum deviation occurs forτe ≈ 1/ωH,

S2 ≈ 0.1 (noS2 < 0.1 are included).
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FIG. 1. Correlation between spectral densities values obtained from15N T1,

T2, and hetNOE using the reduced spectral density approximation and the true
spectral densities that were used to generate the15N T1, T2, and hetNOE data.
A, B, and C show the results forJ(0), J(ωN), andJ(0.87∗ ωH), respectively.
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(see Supporting Information). The analytical solution does not
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residues with smallS2 reduces the rmsd relative to the rmsd f
all residues (Table 1). This reflects the well-known fact that
reduced spectral density mapping works best for rigid resid
(22). The largest deviations are present forτe ≈ 1/ωH and these
decrease with increasingS2. The derivative of the maximum de
viation with respect toS2 is largest for smallS2 in the case of
J(0) andJ(ωN), whereas forJ(0.87ωH) the opposite is true.

The robustness of our analytical solution in the presenc
random errors in the relaxation rates was tested also for the
set of 9991 virtual residues modified by addition of 1, 3, or 5
Gaussian errors to theT1, T2, and hetNOE values (calculate
at 600 MHz proton frequency). In additional calculations t
overall correlation timeτc was deliberately offset by 0.5 ns from
the value that was used in the generation of the synthetic
laxation rates (too short:τc = 6.5 ns, too long:τc = 7.5 ns).
For all cases,S2, τe, andRex were also obtained by fitting the
isotropic Lipari–Szabo model with exchange contributions
the relaxation rates using the sameτc as above (i.e., the pa
rameters used wereS2, τe, Rex). Figures 2A and 2B show the
correlation between original and back-calculatedτe values for
τc = 7.0 ns and 3% Gaussian noise using the analytical solu
and the common procedure of model fitting, respectively. B
figures include also the results that are obtained when usin
error-free data set, thus proving the correctness of both meth
Obviously, fitting leads to an underestimation of theτe values in
some cases; this is not observed for the analytical solutions

The accuracy and precision ofS2 and Rex were assessed b
calculating the mean value and standard deviation of the dif
ence between the back-calculated and original parameter
ues. The comparison of the analytical solution with the fitti
procedure is summarized in Table 2. The very few cases w
the

es,
ad,
the analytical solution did not result in meaningful results for
S2(>1 or<0) were not included in the mean value or standard

FIG. 2. Correlation between original and back-calculatedτe values forτc = 7.0 ns and 3% Gaussian noise (gray symbols). A and B show the results for

benefit as much from additional data as the fitting procedur
as it is not possible to use all of the data simultaneously. Inste
analytical solution and the common procedure of model fitting, respectively.
(ideally they should all lie on the diagonaly = x). Deviations are observed onl
ER, AND HOLAK
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TABLE 2
Mean Values and Standard Deviations of the Difference between

the Back-Calculated and Original S2 and Rex Values Comparing
Accuracy and Precision of the Analytical Solution with the Fitting
Procedure

Analytical solution, Fitting procedure,
Amount of S2(calc)-S2(true) S2(fit)-S2(true)

error in No. (S2 > 1
the data (%) orS2 < 0)a Mean S.D.b Mean S.D.b

1 1 0.0002 0.014 0.0007 0.012
3 6 −0.002 0.036 0.005 0.042
5 55 −0.005 0.056 0.011 0.07

Rex(calc)-Rex(true) Rex(fit)-Rex(true)
1 1 −0.002 0.15 −0.006 0.14
3 6 0.017 0.44 −0.041 0.42
5 55 0.058 0.72 −0.097 0.7

a Number of cases of the total of 9991 resulting inS2 > 1 or S2 < 0 for the
analytical solution.

b Standard deviation.

deviation, but the number of such occurrences is reported
Table 2. On the other hand, the exchange contributionRex and
the effective internal correlation timeτe were not restricted to
positive values. A table comparing analytical solution and fi
ting procedure usingτc = 6.5 ns andτc = 7.5 ns can be found
in the Supporting Information. For both methods overestima
ing τc by 0.5 ns (=7%) leads toRex values that are on average
≈0.6 Hz too small, whereasτc = 6.5 ns results inRex exceeding
the true values on average by≈0.6 Hz. Surprisingly, this is still
true if one uses data at two field strengths (proton frequen
of 500 and 600 MHz) simultaneously for the fitting procedur
The black symbols represent the results that were obtained from an error-free data set
y for very smallτe values (<1ps).
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independent parameter sets ofS2, τe, andRex can be calculated
and averaged. If data from several field strengths are avail
many different combinations of spectral density values can
used.S2 andτe can be calculated from anyJ(ω1), J(ω2) pairs
using Eqs. [8] and [9] provided thatω1/2 > 0 (that is, no ex-
change contribution is present inJ(ω1/2)). Rex is then given by
Eq. [10] using any of theJ(0) values. Of course, not all possib
combinations are independent.

To test our analytical solution on experimental data,
used relaxation rates for ubiquitin published by Tjandraet al.
(11). Ubiquitin is a small and well-characterized protein of
residues. It was chosen for its small amount of anisotropy
the overall rotational diffusion (anisotropy factorσ = 1.17) and
for the high quality of the experimental data (obtained at a fi
strength of 600 MHz). AfterS2, τe, and Rex were calculated
negative values forτe andRex were replaced by zeros (as the
parameters are restricted to positive values in the fitting pro
dure also). The few negative excursions were all small (τe >

−23 ps,Rex > −0.6 Hz in all cases). Four C-terminal residu
(73–76) were excluded from the comparison, because theS2,
τe, Rex Lipari–Szabo model could not reproduce the measu
relaxation rates satisfactorily indicating that the Lipari–Sza
model is not adequate for the description of the dynamic beh
ior of these residues. It has been observed in many studies th
simple Lipari–Szabo model was not applicable to some ter
nal residues (15, 16, 26, 31). More complicated models, usuall
with two internal time scales, can be invoked for those resid
(15, 32). Figure 3 shows the agreement between publishedS2

and τe parameters for the isotropicS2, τe model and the re-

x-

ical

sults obtained with our analytical solution. In both casesτc =
4.09 ns was used. The pairwise rmsd is<0.02 for S2 and 3.5 ps

approach for extracting parameters of motion from the rela
ation rates, it is at least clear that both methods, the analyt
FIG. 3. Lipari–Szabo parametersS2 andτe extracted from the published15N
lines represent published parameter values obtained by fitting to the experi
of our analytical solution again withτc = 4.09 ns.
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for τe. Tjandraet al.(11) have excluded residues 18, 23, 25, an
36 from their analysis as having a significant conformation
exchange contribution to the transverse relaxation rate. Exa
these residues haveRex values larger than 0.5 Hz in our calcula
tions. Using theS2, τe, Rex model instead of theS2, τe model in
the fitting procedure reduces the rmsd between fitting proced
and analytical solution to 0.01 forS2 and 2 ps forτe. The rmsd
for Rex is 0.002 Hz in this case. All results for the relaxation da
of ubiquitin are listed in detail in the Supporting Information.

DISCUSSION

Applicability of the reduced spectral density mapping h
been so far assumed to be limited to cases of low mobi
(22, 24). Our simulations show that even in the presence
high flexibility (order parametersS2 as low as 0.1) the reduced
spectral density approximation works well. Therefore, we ha
combined the reduced spectral density mapping with anal
cal formulas that calculateS2 andτe from the spectral density
at two frequencies. Possible exchange contributions are der
subsequently and do not influence the determination ofS2 and
τe. This is in contrast to fitting procedures for which a decisio
has to be made in advance whether to includeRex or not. In
our simulations we found that the analytical solution is mo
accurate than the fitting procedure using data from one fi
strength and slightly more precise in theS2 values. Precision of
the Rex is the same for both methods. Inaccuracy in the over
tumbling timeτc affects both methods in the same way. Althoug
the differences are too small to claim superiority of our ne
NMR relaxation measurements on ubiquitin (11). Circles connected by broken
mental rates withτc = 4.09 ns whereas crosses connected by full lines show the results
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solution and the fitting procedure, perform almost equally w
in the interpretation of relaxation data in terms of Lipari–Sza
parameters in the isotropic case. The advantage of the an
ical solution is that the motional parameters can be calcula
straightforwardly without the need for fitting routines. This c
save quite some time when computing errors in the Lipari–Sz
parameters by the common Monte-Carlo method. With fitt
procedures and hundred Monte-Carlo rounds per residue
SGI-O2 workstations need some minutes of time per resid
resulting in several hours for a medium-sized protein wher
the analytical approach does not need any appreciable tim
computation. Also, it represents a completely new method
obtaining Lipari–Szabo parameters. A current drawback is
Eqs. [8]–[10] are only valid for isotropic overall tumbling. Sinc
the first application of an anisotropic Lipari–Szabo model to p
tein15N relaxation rates (33), it has been shown many times th
anisotropic tumbling can be detected from the15N relaxation
rates. For our test case, ubiquitin, an anisotropy factor as s
asσ = 1.17 could be determined with statistical significan
due to the very high quality of the experimental data. Howev
the rmsd between Lipari–Szabo parameters from the isotr
and the anisotropic analysis are as small as 0.005 forS2 and
1.5 ps forτi (11). Statistical errors in these parameters are u
ally much larger. This is in agreement with the theoretical stu
of Schurret al.(10) where it was found that moderate anisotro
(σ <2.0) does not affect Lipari–Szabo parameters much, as
as with our own experience (12). The only parameter that seem
to exhibit some sensitivity toward anisotropy is the exchan
contributionRex (11, 27). With our analytical approach we ca
culateS2 andτi with Eqs. [8] and [9] assuming isotropic tum
bling. For the subsequent calculation ofRex anisotropy can be
taken into account using Eq. [11].

Several modifications of the method can be derived using
ferent pairs of spectral density values in Eqs. [8]–[10]. For15N
relaxation the following simplification is possible (if exchang
broadening can be ruled out by additional experiments): the
frequencies used in the analytical solution can be set to zero
ωN and in cases of low mobilityS2 and τe can be calculated
from T1 andT2 alone. The contribution of (NOE-1) toJ(ωN)
in Eq. [3] is scaled down byγN/γH ≈ 0.1. Therefore, the the-
oretical maximum for the NOEs can be used in Eq. [3] inste
of the real value, if the real NOE does not deviate too mu
from the maximum. As the NOE experiment is less sensit
thanT1 or T2 experiments, this simplification can save subst
tial measurement time (when applicable). Although not sho
explicitly in this paper, the analytical solution is not limited
15N relaxation, but can be applied whenever the spectral den
can be evaluated at two different frequencies.

CONCLUSIONS

From our results it can be concluded that our analytical so

tion combined with the reduced spectral density mapping wo
equally well compared to fitting procedures in determining m
ER, AND HOLAK
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croscopic parameters of motion (S2, τe, Rex). In very few cases
(0.6% for the data set with 5% Gaussian error) no meaningful
sults forS2 were obtained in the simulations (S2 > 1 orS2 < 0).
The application of our analytical solution to experimental15N
relaxation data for ubiquitin leads to Lipari–Szabo paramete
that are in very good agreement with published values deriv
from the same experimental relaxation rates.

Supporting information. The Supporting Information con-
tains details of the computer simulations providing empiric
evidence that always exactly one solution to Eq. [8] is foun
between zero andτc ( 3 pages) plus four tables (6 pages): thre
tables compare the analytical solution and fitting procedure
ing (a) too low (6.5 ns) values forτc, (b) too high (7.5 ns) values
for τc, and (c) data from two field strengths simultaneously. Th
fourth table compares the Lipari–Szabo parameters obtained
different calculations from the published experimental rela
ation rates for the protein ubiquitin. This material is availab
from the authors.
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