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An analytical solution to the Lipari-Szabo model is derived for
isotropic overall tumbling. The parameters of the original Lipari-
Szabo model, the order parameter S and the effective internal
correlation time 7, are calculated from two values of the spectral
density function. If additionally the spectral density value J(0) is
known, the exchange contribution Re, term can also be determined.
The overall tumbling time =, must be determined in advance, for
example, from T,/ T, ratios. The required spectral density values
are obtained by reduced spectral density mapping from Ty, T,, and
NOE measurements. Our computer simulations show that the re-
duced spectral density mapping is a very good approximation in
almost all cases in which the Lipari—-Szabo model is applicable. The
robustness of the analytical formula to experimental errors is also
investigated by extensive computer simulations and is found to be
similar to that of the fitting procedures. The derived formulas were
applied to the experimental **N relaxation data of ubiquitin. Our
results agree well with the published parameter values of $? and
7., Which were obtained from standard fitting procedures. The an-
alytical approach to extract parameters of molecular motions may
be more robust than standard analyses and provides a safeguard
against spurious fitting results, especially for determining the ex-
Change contribution Re. © 2001 Academic Press

Key Words: high-resolution NMR; N relaxation; spectral
density mapping; order parameter; chemical exchange; protein
dynamics.

INTRODUCTION

of motion a generalized model, often called the “model-free ap
proach,” was presented by Lipariand Szabo in 1832)( In this
model motions of a molecule are separated into the overall rc
tational reorientation and additional internal motions, which are
described by one amplitude (order param&drand one time
scale (internal effective correlation timeg), respectively. The
Lipari-Szabo model is not based on a specific physical mode
(hence the name model-free) and therefore the Lipari—-Szak
parameters represent only the simplest generalized descriptit
of internal motions. To translate these generalized paramete
into specific physical observables a physical model (for exam
ple, wobbling in a cone) must be invoke®) (The Lipari-Szabo
model can be extended to incorporate anisotropy of the overs
tumbling of a molecule9). However, Schuret al. (10) have
shown by computer simulations that for moderate anisotrop
(o0 < 2.0) neglecting anisotropy does not affect Lipari—-Szabc
parameters much. Experimentally, differences betweenisotrop
and anisotropic analysis were also found to be small for mode!
ate anisotropyX1, 12. In the original articles Lipari and Szabo
presented a simple analytical solution to their model providec
internal motions are in the “extreme narrowing” lim&)( In

the general case fitting procedures are proposed to determil
parameter values that optimize agreement between measur
relaxation rates and rates calculated from the model. The ir
ability to invert the Lipari-Szabo model has been implied in all
applications and has even been stated explicRi 8. How-
ever, due to its simplicity the Lipari-Szabo model has been ver

One of the strengths of NMR is its ability to study the dynamisuccessful for interpretation &tN, 13C, and recently also GH

behavior of molecules in solution at an atomic levil). Two relaxation rates1(4—19.

different approaches currently exist for addressing motions onOnly more recently was a truly model-free approach, the
very different time scales. Motions on slow time scales (secontisll spectral density mapping,” developed by Peng and Wagne
to years) are investigated Bid/°D-exchange of exchangeable(20, 2J). In this approach additional relaxation experiments are
protons, whereas faster motions (picoseconds to millisecondgjoduced to determine the spectral density values at five fre
are studied by measurement and evaluation of nuclear spingaencies. The spectral density at high frequencies was found
laxation rates mainly of°N, 13C, or?H nuclei 3-5). Although be small. Based on this observation 3 years later the “reduce
measurement diH relaxation is in principle possible, quantita-spectral density mapping” method was developed by Farroy
tive interpretation is usually hampered by the multitude of relaet al. (22) and a similar approach was reported by Ishima anc
ation pathways that exist for protons. For the interpretation of tiNagayama Z3). The methods rely on the approximations of
experimental relaxation rates in terms of microscopic parametére high frequency values of the spectral density. The reduce
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spectral density mapping approach allows the determinationr@frrowing limit, i.e., whenvo?t? « 1, the second term of the
spectral density values from measurgd T,, and NOE data |ipari-Szabo model function can be approximated by &)z
alone. The validity of the reduced spectral density mapping a@). In this case, analytical expressions 8randr. are obtained
proximation was confirmed by full spectral density mappingnmediately:
(24). The main application of this approach has been'in
relaxation rates of°N enriched proteins26—27. 5 . . -1

We show in this contribution that when the Lipari-Szabo S = =(J(w1) — J(wz))( °2 5~ °2 2) .2
model is applicable the reduced spectral density approximation l+orre 1t wgre

works very well over a much larger range of Lipari—-Szabo pa-

rameter values than those expected so far. The main focus of fifigPuter simulations, as described below, indicate that usin
study is on an analytical solution of the original isotropic Lipari&t = 0-87@H andw, = wy (reduced spectral density mapping)

Szabo model with two adjustable paramet&sande, and a this approximation gives good results foBlwy 1 < 0.6{ e.g.,
given overall correlation time.. Formulas are derived that aIIowfor @i < 200 ps at 600 MHz protqn fre_quency (unpubllshed re-
calculations ofs? andre from two (arbitrary) valuesi(w;) and  SUlts)- Forz > 200 ps the approximation (Eq. [2]) is no longer
J(w>) of the spectral density function. The application of thesg@lid-

formulas to spectral density valud$wy) and J(0.87wy) ob- Reduced spectral density mappindg.he spectral density
tained by reduced spectral density mapping is proposed for dalaction J(w) has small values fow = wy (*H angular spin
culating order paramet&?, effective internal correlation times precession frequency) as shown by Peng and Wa@@e2()

e, and possible exchange contributidRs from data obtained and LeEvre et al. (24). Therefore, it can be assumed that it
by standard®N relaxation measurements at one field strengtiaries only little in the vicinity ofwy. In the reduced spectral
i.e., longitudinalTy, transversél,, and heteronucledPN{*H} density approach the spectral density valiés), J(wn), and
NOE, without the need of fitting procedurddsing J(0) allows J(0.87wy) are calculated from th&N T, T,, and NOE using
simple calculation of? andze values. However, measurementshe approximation) (w) o 1/w? for o = wy + wn (22):

at several field strengths are required to deterndi® values

that are not affected by exchan@s). We propose to usé(wy) 4 wn ) (NOE — 1)

and J(0.87wy) so that exchange broadening and experimental J(0.87wn) = (@) (%)T

difficulties affectingT, measurements (as described in R28) (

and references therein) do not affect the determinati@®? ahd J(on) = i(l _ zm(NOE— 1))/<3_dz + cz)
7e. The range of validity and the robustness against experimental Ty SH 4

errors are tested by extensive computer simulations. Previously 1 1/1 3m

published relaxation data for the protein ubiquitli)are used J(0) = <?2 A (5 + E%(NOE_ 1)>>/

to compare the results from our analytical formulas with those
from common fitting procedures. Although we focus mainly on d?  2¢?

15N relaxation of proteins, the approach derived herein is ap- x (? + ?)
plicable whenever at least two values of the spectral density

3]

function can be determined. with c andd as in Farrovet al.(22): ¢ = w3 (0] — 0.)?/3,d =
(uornh/(872)/ < 1/rd > (d2/4 ~ 1.31Fs2, 2 ~ 0.9
THEORY 10° s~2 at 500 MHz proton frequency) where symbols have their

o . . usual meanings.
The Lipari-Szabo model.The experimentally accessible re- g

laxation rated, T,, and NOE are functions of the spectral den- Derivation of the analytical solution. w; andw, are defined
sity J(w) at various frequencies (30). As the formulas for astwo frequencies for which the spectral dengity) is known.
T., T», and NOE contain five spectral density values, a dire€f: T Te, andRex are Lipari-Szabo parameters as before. Defin-
inversion of the equations is not possible. In the Lipari-Szais C(«) = 2.5 J()(1 + w?z¢) we obtain for the Lipari-Szabo
approach a model function fat(w) with only two adjustable Model
parametefs? andz is assumedq):

C(0) (14 0ftd) =[Sre(1+ 0f1d) + (1 — )1e(1+ 0?7 ]

2( St 1- e [4]
J(w) = = . 1
(@) 5(1+w21:C2+ 1+a)2rez> (1]

o ) ) ] Settingw; = w; and adding on the left side
The effective internal correlation time. is connected to the

internal correlation time; by 1/t = 1/7y + 1/1.. Theoverall o, > > 2 2 2 2 o N 2.2
correlation timer is the same for the whole molecule and S @2rTeTe + (1= Swprite— Swptete - (1- Szt Te=0.
usually determined frorTy/ T, ratios (L1, 14). In the extreme [5]
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one obtains after rearrangement of the terms and applicationegiations thamgfcte — 1 # 0. This is no restriction om;

Eq. [4] withwi = w; as the derivation and final solution are completely symmetrica
. - with respect tan; andw,. Thereforew, can always be chosen
C(w1)(1+ witg) = Cw2)(1+ 037) appropriately gy or 0.8%wy), S0 thaw2t.te — 1 # 0is fulfilled.

Usually J(wn) is known to higher precision thah(0.87wy) so
that it is recommendable to uag = wy, if possible.

In the presence of moderate anisotropy order paraméfers
and internal correlation times remain largely unaffectedL(,
11), thus justifying the application of Egs. [8]-[10]. The ex-
2)} change contributiorRex, however, is dependent on anisotropy

+ che(wi - wg)[sz(fe — 1)+ 7] [6]

Equation [4] withw; = w, is solved forS?(te — 7c) and inserted
in Eq. [6]. After some algebra one obtains

2
TeTe(@] — @5 of the overall tumbling 11, 27). Therefore, Eq. [10] must be

Co1)(1+ 0?7d) = Cw) (1 + 037d) | 1+
replaced by

CU%TC‘CQ -1

_ fcfe((l)% — w%) (fe + Tc)

[7] 2 >
wFrete — 1 Rex=130)— ¢ | S} Avtn + (1 - e
n=1
o o . .
:\r/]lutltlpllcatmn with w5t:Te — 1 yields an equation of third order « (d2/2 + 2¢2/3), [11]
e
t3[C(w1) — C(w2)]wiw3te + T2[C(w2)ws — Clwr)w? with the A, and, defined by the fully asymmetric diffusion
tensor (1). . is in this case calculated agdk = 5/, +5/1, +

+ rc(a)f - a)g)] + re[C(wl)wgtc — Clw)w?te

+ 1¢(0% — w3)] + C(wz) — C(wy) = 0. 8]

5/t3+5/t4 + 5/75 + 5/1i.

COMPUTER SIMULATIONS
J(0.87wy) andJ(wn) can be calculated with the reduced spectral
density approach frori; and heteronuclear NOE. Fan and  SyntheticT;, T,, and NOE data were generated randomly
wz one inserts 0.8y andwy and obtains,. as the solution at proton frequencies of 500 and 600 MHz for 10,000 virtual
of Eq. [8] that lies between zero ang It is important to note °N nuclei (assuming one attached proton as in the protei
that Eq. [8] is valid for allze if the dependence & (wi) onte  backbone). From homogeneously distributed random numbel
is taken into account. In our approach we detern@e;) from  X(1), X(2), X(3) € [0, 1], (P(X) = const) order parameters
experimental relaxation rates and consider them constant in &% internal correlation times;, and exchange contributions
search for ae that fulfils Eq. [8]. Only with constar(w;) does R., were calculated as follows? = 0.9-08x X(1?, ¢, =
Eq. [8] represent a third-order equation for A general proof 0.7 X(2)x 10°*@ ps Rex = X(3)? % 10 Hz. The effective in-
of the existence of a unique solution is hampered by the faetnal correlation time, is given by ¥t = 1/t + 1/1.. The
that theC(w;) have few general properties that can be exploitdgotropic Lipari-Szabo model with a constant overall correlatior
for such a proof. However, we have investigated this probletime . of 7.0 ns was used to generatg T,, and NOE values.
with computer simulations covering all possible Lipari-Szaberom the spectral densities obtained by Eq.T1]T,, and NOE
parameter combinations and have obtained in all cases a unigtiiagnetic field strengths of 500 and 600 MHz proton frequenc
solution, thus providing empirical evidence that always exactlyere calculated with the well-known formula®4-17). Para-
one solution to Eq. [8] is found (for details see the Supportingeter combinations that resulted Ta times longer than 5 s
Information). were discarded (9 cases of 10,000). For the test of the analytic
Using again Eq. [4]S? can be calculated as solution Gaussian noise with a standard deviation of 1, 3, an
5% was added to the relaxation rates resulting in three differer
data sets, each comprisifig, T, and NOE values at two field
strengths for 9991 virtual nuclei.

Testing of the reduced spectral density mapping approxime
J(0) calculated with the reduced spectral density mappitign J(w) o« 1/w? for @ = wy £ wy, as proposed by Farrow
(Eq. [3]) depends oM, and therefore contains the exchanget al.(22), was performed using a noise-free data 3¢0) was
contributionRey, not calculated according to Eq. [3], but using Egs. [19] and [20
of Farrowet al. (22) because exchange contributioRg, were
present in our synthetit, values.

Tests of the analytical solution were performed on the dat:
sets containing 1, 3, or 5% Gaussian errat), J(wy), and
It has been assumed several times in the derivation of the abdy8.87w) were calculated with Eq. [3] frory, T,, and NOE

C(a)z)(l + a)grez) — re(l + a)grcz)]

2|
5= (te — TC)(a)gche - 1)

(9]

Rex = [J(O) - é(szrc + Te — Szre)}(dz/Z +2¢2/3). [10]
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atone field strength. The overall correlation tirggvas setto 6.5

(too short), 7.0 (correct), and 7.5 ns (too long) in different calcu- 3 ' ' ' ' '
lations to investigate the influence of error in thevalue on the
resulting Lipari-Szabo parameters. Frdfay) andJ(0.87w) w 2-3f A 1
the effective internal correlation timg was determined as the s
solution of Eqg. [8] that lies between 0 and If no solution was ﬁ 2T i
found in this range, we decreased the lower limit from zero to
—10 ps because statistical errors can shift the solution of Eq. [8] & 1.57¢ 7
to small negative values. In all the simulations for evéryT,, 5
NOE triple a solution to Eq. [8] could be found betweehO ps o 1r ]
and .. The order paramete®’ was calculated using Eq. [9], 0
and the exchange contributidR.x was then determined from £ 0.5 .
J(0), S, andze using Eq. [10]. It should be emphasized that the
appearance of negative times is only due to errors present in the 0 : : : : :
T, and NOE values and negativgshould be replaced by zero 6 0.5 1 1.5 2 2.5 3
(after calculation 0f5? and Rey). Jirue (0) in ns
We found for all three simulated cases that NOE values higher
than the theoretical maximum lead to strong overestimation of 0.5 . . [ .
e and subsequently often & values>1 or < 0. Therefore, we )
used the theoretical maximum for the NOE in all our calculations 0
whenever the NOE value (caused by experimental error) was & 0.4 ¢ B N
higher than the field-dependent maximum. o
0.3} -
RESULTS —
82
Unless stated otherwise, all calculations were performed us- — 0.2 1 ]
ing the'>N Ty, T», and hetNOE values calculated for a proton 3
frequency of 600 MHz. Figure 1 shows good agreement be- 3 0.1} _
tween spectral densities values obtained ffSh Ty, T,, and £ )
hetNOE using the reduced spectral density approximation and
the true spectral densities that were used to generat&®he 0 ' ' ' '
Ty, T2, and hetNOE data. Even in cases of high mobility, as in- 0 0.1 0.2 0 3 0.4 0.5
dicated by largeJ(0.87»y) and smallJ(0) values, almost no Jirue (@y) in ns
visible deviations from the straight line= x can be seen. The
relative deviation of the back-calculated spectral densities from 0.06 : :
the original ones averaged over the whole data set of 9991 vir- ©
tual residues is given in the first column of Table 1. Excluding a C
a
-H

TABLE 1
Relative rmsd between Spectral Densities Calculated with the Re-
duced Spectral Density Mapping Approximation and True Values
(=100% s (Japprox/ Jrue — 1)) Averaged over Subsets of the Whole

Toa1e(0.870)
o

Data Set Comprising 9991 Virtual Residues 021 i
Rel. rmsd AIR £ > 05 &£ >07° Max 4
J(0) 0.50% 0.11% 0.05% 5.6%
J(wn) 0.83% 0.24% 0.13% 7.2% 0 L L
J(0.87wn) 0.19% 0.17% 0.15% 0.8% 0 0.02 0.04 0.06
@ See Computer Simulation for the generation of the data set of 9991 virtual Jtrue (0. 87(01{) in ns
residues.
b Data generated witB? < 0.5 are excluded from averaging. FIG.1. Correlation between spectral densities values obtained'f?bify,
¢ Data generated wits? < 0.7 are excluded. T, and hetNOE using the reduced spectral density approximation and the tru

d For all spectral densities the maximum deviation occurstforr 1/wy,  spectral densities that were used to generatéNely, To, and hetNOE data.
£ ~ 0.1 (no$? < 0.1 are included). A, B, and C show the results far(0), J(wn), and J(0.87 * wy), respectively.
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residues with smalf? reduces the rmsd relative to the rmsd for TABLE 2

all residues (Table 1). This reflects the well-known fact that the Mean Values and Standard Deviations of the Difference between
reduced spectral density mapping works best for rigid residui#§ Back-Calculated and Original §° and R, Values Comparing
(22). The largest deviations are presentfor: 1/wy and these Accuracy and Precision of the Analytical Solution with the Fitting
decrease with increasirgf. The derivative of the maximum de- Procedure

viation with respect t&? is largest for smal? in the case of Analytical solution, Fitting procedure,
J(0) andJ(wy), whereas for (0.87w1) the opposite is true, ~ Amountof $(calo) S(true) S(fity- (true)

. R rror in No. & > 1
The robustness of our analytical solution in the presencetgf data (%) oS < O)

) . Mean s.ob Mean s.DP
random errors in the relaxation rates was tested also for the data
set of 9991 virtual residues modified by addition of 1, 3, or5% 1 1 0.0002 0.014 0.0007  0.012
Gaussian errors to thE,, T,, and hetNOE values (calculated 6 —0.002 0036  0.005  0.042

" ; 55 —0.005 0.056 0.011 0.07

at 600 MHz proton frequency). In additional calculations the Rex(calc)-Ro(true) Rox(fit)- Rex(true)
overall correlation time. was deliberately offset by 0.5 ns from 1 1 —0.002 0.15 —0.006 0.14
the value that was used in the generation of the synthetic re- 3 6 0.017 044  -0.041 0.42
laxation rates (too short, = 6.5 ns, too longz, = 7.5 ns). 5 55 0.058 072 -0.097 0.7

2 . . B
_For all .cas_esS., Te, and Rex were also obtained by f!ttlng the  a Number of cases of the total of 9991 resultingsh> 1 or 2 < 0 for the
isotropic Lipari-Szabo model with exchange contributions tnalytical solution.

the relaxation rates using the sameas above (i.e., the pa- " Standard deviation.
rameters used wer®, 7, Rey). Figures 2A and 2B show the
correlation between original and back-calculatedalues for deviation, but the number of such occurrences is reported i
7. = 7.0 ns and 3% Gaussian noise using the analytical solutidable 2. On the other hand, the exchange contribulgrand
and the common procedure of model fitting, respectively. Bothe effective internal correlation time were not restricted to
figures include also the results that are obtained when usingpsitive values. A table comparing analytical solution and fit-
error-free data set, thus proving the correctness of both methddsy procedure using. = 6.5 ns andr; = 7.5 ns can be found
Obviously, fitting leads to an underestimation of th@alues in in the Supporting Information. For both methods overestimat
some cases; this is not observed for the analytical solutions.ing t. by 0.5 ns £7%) leads toR.« values that are on average
The accuracy and precision 8f and Re, were assessed by~0.6 Hz too small, whereas = 6.5 ns results irRe, exceeding
calculating the mean value and standard deviation of the difféine true values on average 8.6 Hz. Surprisingly, this is still
ence between the back-calculated and original parameter valke if one uses data at two field strengths (proton frequenc
ues. The comparison of the analytical solution with the fittingf 500 and 600 MHz) simultaneously for the fitting procedure
procedure is summarized in Table 2. The very few cases whésee Supporting Information). The analytical solution does no
the analytical solution did not result in meaningful results fdvenefit as much from additional data as the fitting procedure:
S?(>1 or <0) were not included in the mean value or standas it is not possible to use all of the data simultaneously. Instea

100000 100000
o J,E«',
=
10000 A 2 10000 B g
1000 3% Gaussian error - - 1 B 1000 3% Gaussian error - 2 - =
u No Gaussian error * - ", 0 No Gaussian error * . .,
@ 3 2 Q2 ) 75
¢ 100 i g 00 L
PRIy T ;
r iyt R e i

% ,'* i = ..-._l,."v.l

o7 10 — 10
U . D
m o
{U - Ay Q_‘
] 1 . = 1
i o
a
. e

0.1 0.1

0.01 S 0.01

.r
0.001 A 0.001 % =
0.001 0.01 0.1 1 10 100 1000 10000 0.001 0.01 0.1 1 10 100 1000 10000
T.(true) in ps T (true) in ps

FIG. 2. Correlation between original and back-calculatedalues fort. = 7.0 ns and 3% Gaussian noise (gray symbols). A and B show the results for tt
analytical solution and the common procedure of model fitting, respectively. The black symbols represent the results that were obtained fréneeatatarset
(ideally they should all lie on the diagongl= x). Deviations are observed only for very smallvalues &1ps).
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independent parameter setsS3f 7., and Rex can be calculated for .. Tjandraet al.(11) have excluded residues 18, 23, 25, and
and averaged. If data from several field strengths are availaBfe from their analysis as having a significant conformational
many different combinations of spectral density values can B¥change contribution to the transverse relaxation rate. Exactl
used.S? andte can be calculated from any(w1), J(w.) pairs these residues hawy values larger than 0.5 Hz in our calcula-
using Egs. [8] and [9] provided thaty, > O (that is, no ex- tions. Using thes”, 7, Rex model instead of th&?, ze model in
change contribution is present dqw1,2)). Rex is then given by the fitting procedure reduces the rmsd between fitting procedur
Eq. [10] using any of thd (0) values. Of course, not all possibleand analytical solution to 0.01 f&” and 2 ps forre. The rmsd
combinations are independent. for Rexis 0.002 Hz in this case. All results for the relaxation data
To test our analytical solution on experimental data, wef ubiquitin are listed in detail in the Supporting Information.
used relaxation rates for ubiquitin published by Tjanetal.
(12). Ubiquitin is a small and well-characterized protein of 76 DISCUSSION
residues. It was chosen for its small amount of anisotropy in
the overall rotational diffusion (anisotropy factor= 1.17)and  Applicability of the reduced spectral density mapping has
for the high quality of the experimental data (obtained at a fieltken so far assumed to be limited to cases of low mobility
strength of 600 MHz). AfterS?, 7., and Re, were calculated (22, 24). Our simulations show that even in the presence of
negative values for, and Re, were replaced by zeros (as thesaigh flexibility (order parameters? as low as 0.1) the reduced
parameters are restricted to positive values in the fitting proaectral density approximation works well. Therefore, we have
dure also). The few negative excursions were all small{ combined the reduced spectral density mapping with analyti
—23 ps,Rex > —0.6 Hz in all cases). Four C-terminal residuesal formulas that calculat€” andz, from the spectral density
(73-76) were excluded from the comparison, becausesthe at two frequencies. Possible exchange contributions are derive
Te, Rex Lipari-Szabo model could not reproduce the measursdbsequently and do not influence the determinatio®atnd
relaxation rates satisfactorily indicating that the Lipari—-Szabq. This is in contrast to fitting procedures for which a decision
model is not adequate for the description of the dynamic behdas to be made in advance whether to inclirRig or not. In
ior ofthese residues. It has been observed in many studies thatthe simulations we found that the analytical solution is more
simple Lipari-Szabo model was not applicable to some terngiecurate than the fitting procedure using data from one fiel
nal residuesi(5, 16, 26, 31). More complicated models, usuallystrength and slightly more precise in tBévalues. Precision of
with two internal time scales, can be invoked for those residut® Rey is the same for both methods. Inaccuracy in the overal
(15, 32). Figure 3 shows the agreement between publisfed tumbling timez, affects both methods in the same way. Although
and 7, parameters for the isotropi€?, . model and the re- the differences are too small to claim superiority of our new
sults obtained with our analytical solution. In both cases= approach for extracting parameters of motion from the relax
4.09 ns was used. The pairwise rmsgi8.02 for S and 3.5 ps ation rates, it is at least clear that both methods, the analytic

1 200
1 160
Tjandra et al. = =0~ = 3=
analytical solution ——— T
2 e
S {8
n ps
40
0
0 10 20 30 40 50 60 70 80

amino acid sequence

FIG. 3. Lipari-Szabo paramete& andz extracted from the publishedN NMR relaxation measurements on ubiquitiri). Circles connected by broken
lines represent published parameter values obtained by fitting to the experimental rates-witl®9 ns whereas crosses connected by full lines show the result:
of our analytical solution again with, = 4.09 ns.
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solution and the fitting procedure, perform almost equally wedkoscopic parameters of motio8% te, Rex). In very few cases

in the interpretation of relaxation data in terms of Lipari-Szali@.6% for the data set with 5% Gaussian error) no meaningful re
parameters in the isotropic case. The advantage of the anadyftts forS? were obtained in the simulationS{> 1 or? < 0).

ical solution is that the motional parameters can be calculatede application of our analytical solution to experimerif
straightforwardly without the need for fitting routines. This cafelaxation data for ubiquitin leads to Lipari-Szabo parameter
save quite some time when computing errors in the Lipari-Szafit are in very good agreement with published values derive
parameters by the common Monte-Carlo method. With fittingom the same experimental relaxation rates.

procedures and hundred Monte-Carlo rounds per residue ouéupporting information. The Supporting Information con-

SGI-O2 workstations need some minutes of time per residl{e, . . . - -
ains details of the computer simulations providing empirical

resulting in several hours for a medium-sized protein whereas : :
. : : ?wdence that always exactly one solution to Eq. [8] is founc
the analytical approach does not need any appreciable time r .
computation. Also, it represents a completely new method fb(ra ween zero ane; ( 3 pages) plus four tables (6 pages): three
obtalionin Li lari—S’zabo parameters A cpurren); drawback is thgp les compare the analytical solution and fitting procedure us
gLp P ' Ing (a) too low (6.5 ns) values fag, (b) too high (7.5 ns) values

Egs. [8]-{10] are only valid for isotropic overall tumbling, Sinc(:Tor ¢, and (c) data from two field strengths simultaneously. The
the first application of an anisotropic Lipari-Szabo model to pr?- @ )

tein1°N relaxation rates33), it has been shown many times tha ourth table compares the Lipari-Szabo parameters obtained |
. . . . different calculations from the published experimental relax-
anisotropic tumbling can be detected from il relaxation

Co . at")n rates for the protein ubiquitin. This material is available
rates. For our test case, ubiquitin, an anisotropy factor as small | ihe authors

aso = 1.17 could be determined with statistical significance
due to the very high quality of the experimental data. However,
the rmsd between Lipari-Szabo parameters from the isotropic
and the anisotropic analysis are as small as 0.00%%and , .
L. . This work was supported by the Deutsche Forschungsgemeinschaft (SF
1.5 ps forz; (11). Statistical errors in these parameters are uskls,y
ally much larger. This is in agreement with the theoretical study
of Schurret al.(10) where it was found that moderate anisotropy
(0 < 2.0)does not affect Lipari—Szabo parameters much, as well
as Wlth 0_ur own exper_lgn_caIe). The Onl_y paramgter that seems 1. A. G. Palmer, Probing molecular motion by NM®&urr. Opin. Struct. Biol.
to exhibit some sensitivity toward anisotropy is the exchange 7 732737 (1997).
contributionRex (11, 27). With our analytical approach we cal- 2 m. w. F. Fischer, A. Majumdar, and E. R. P. Zuiderweg, Protein NMR
culate S andt; with Egs. [8] and [9] assuming isotropic tum-  relaxation: Theory, applications and outlodkiog. NMR Spectrosc3,
bling. For the subsequent calculationRfy anisotropy can be  207-272(1998).
taken into account using Eq. [11]. 3. K. T. Dayie, G. Wagner, and J.-F. Leffe, Heteronuclear relaxation and
Several modifications of the method can be derived using dif- € €xperimental determination of the spectral density funciienDy-
ferent pairs of spectral density values in Egs. [8]—[10]. Bor namics and the Problen] of Recognition in B|o|og‘|cal Macromolecules” (O.
: . ’ J . ) . Jardetzky and J.-F. Lefire, Eds.), NATO ASI Series A, Vol. 288, Plenum
relaxation the following simplification is possible (if exchange press New York, 1996.
broadening can be ruled out by additional experiments): the twg | g. kay, Protein Dynamics from NMRBiochem. Cell Biol76, 145-152
frequencies used in the analytical solution can be set to zero and1998).
wyn and in cases of low mobilitys* and e can be calculated 5. J. P. Loria, M. Rance, and A. G. Palmer, A relaxation-compensated Carr
from T, and T, alone. The contribution of (NOE-1) td(wy) Purcell-Meiboom-Gill sequence for characterizing chemical exchange b
in Eqg. [3] is scaled down by /yu & 0.1. Therefore, the the- ~ NMR spectroscopy). Am. Chem. S0d21,2331-2332 (1999).
oretical maximum for the NOEs can be used in Eq. [3] instea& G. Lipar_i and A. Szabo, Mod(_el—frt_ee approach to the interpretation of nuclea
. . magnetic resonance relaxation in macromolecules. 1. Theory and range
of the real va_lue, if the real NOE does_not dgwate too m_u_ch validity. J. Am. Chem. Sod04,4546-4559 (1982).
from the maX|mum. As the _NO_E e>_<[_)er|_ment is less sensmvg G. Lipariand A. Szabo, Model-free approach to the interpretation of nuclea
thanT; or T, experiments, this simplification can save substan- magnetic resonance relaxation in macromolecules. 2. Analysis of experi
tial measurement time (when applicable). Although not shown mental resultsJ. Am. Chem. Sod04,4559-4570 (1982).
explicitly in this paper, the analytical solution is not limited to 8. z. zheng, J. Czaplicki, and O. Jardetzky, Backbone dynamitp oépres-
15N relaxation, but can be applied whenever the spectral density sor studied by°N NMR relaxation Biochemistry34, 5212-5223 (1995).

can be evaluated at two different frequencies. 9. D. E. Woessner, Nuclear spin relaxation in ellipsoids undergoing rotationa
Brownian motion.J. Chem. Phys37,647-654 (1962).

10. J. M. Schurr, H. P. Babcock, and B. S. Fujimoto, A test of the model-
free formulas. Effects of anisotropic rotational diffusion and dimerization.

. . J. Magn. Reson. B05,211-224 (1994).
From our results it can be concluded that our analytical So'!t’l'. N. Tjandra, S. E. Feller, R. W. Pastor, and A. Bax, Rotational diffusion

tion combined with the reduced spectral density mapping Works anisotropy of human ubiquitin frofN NMR relaxation.J. Am. Chem.
equally well compared to fitting procedures in determining mi- Soc.117,12562-12566 (1995).

ACKNOWLEDGMENT

REFERENCES

CONCLUSIONS



12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

ANALYTICAL SOLUTION OF THE LIPARI-SZABO MODEL

. C.Rennerand T. A. Holak, NMN relaxation of the IGF-binding domain 23
of the insulin-like growth factor binding protein 5 (IGFBP-5) determined
free in solution and in complex with IGF-IEur. J. Biochem268,1058—
1065 (2001). 24
D. Jin, M. Andrec, G. T. Montelione, and R. M. Levy, Propagation of exper-
imental uncertainties using the Lipari-Szabo model-free analysis of protein
dynamicsJ. Biomol. NMR12,471-492 (1998).

L. E. Kay, D. A. Torchia, and A. Bax, Backbone dynamics of proteins ag5
studied by*>N inverse detected heteronuclear NMR spectroscopy: Appli-
cation to staphylococcal nucleagochemistry28,8972-8979 (1989).

G. M. Clore, P. C. Driscoll, P. T. Wingfield, and A. M. Gronenborn, Analysis
of the backbone dynamics of interleuki-uising two-dimensional inverse 26
detected heteronucle®iN-'H NMR spectroscopyBiochemistn27,7387—
7401 (1990).

N. A. Farrow, R. Muhandiram, A. U. Singer, S. M. Pascal, C. M. Kay, G.
Gish, S. E. Shoelson, T. Pawson, J. D. Foreman-Kay, and L. E. Kay, Back-

39

. R. Ishima and K. Nagayama, Protein backbone dynamics revealed by qua
spectral density function analysis of amide N-15 nudiachemistry34,
3162-3171 (1995).

. J.-F. Leevre, K. T. Dayie, J. W. Peng, and G. Wagner, Internal mobility in
the partially folded DNA binding and dimerization domains of GAL4: NMR
analysis of the N—H spectral density functioB®chemistry85,2674—-2686
(1996).

.A. A. Markus, K. T. Dayie, P. Matsudaira, and G. Wagner, Local
mobility within Villin 14T via heteronuclear relaxation measurements
and a reduced spectral density mappiBgochemistry35, 1722-1732
(1996).

.C. H. M. Papavoine, M. L. Remerowski, L. M. Horstink, R. N. H.
Kronings, C. W. Hilbers, and F. J. M. van der Ven, Backbone dynamics of
the major coat protein of bacteriophage M13 in detergent micelléShy
nuclear magnetic resonance relaxation measurements using the model-fr
approach and reduced spectral density mapigchemistry36, 4015—

bone dynamics of a free and a phosphopeptide-complexed Src homology 4026 (1997).

2 domain studied by°N NMR relaxation.Biochemistry33, 5984-6003 27
(1994).

T. Zink, A.Ross, K. luiers, C. Cieslar, R. Rudolph, and T. A. Holak, Structure
and dynamics of the human granulocyte colony-stimulating factor deter-
mined by NMR spectroscopy. Loop mobility in a four-helix-bundle protein28
Biochemistry33,8453—-8463 (1994).

D. R. Muhandiran, T. Yamazaki, B. D. Sykes, and L. E. Kay, Measurement
of 2H T1 and Ty, relaxation times in uniforml)}3C—IabeIed and fraction-
ally 2H-labeled proteins in solutiod. Am. Chem. Sod.17,11536-11544
(1995). 29
D. Fushman, S. Cahill, and D. Cowburn, The main-chain dynamics of the
dynamin pleckstrin homology (PH) domain in solution: Analysis'eNl
relaxation with monomer/dimer equilibriund. Mol. Biol. 266,173-194 30
(1997). 31
J. W. Peng and G. Wagner, Mapping of spectral density functions using
heteronuclear NMR relaxation measuremedtsMagn. Reson98, 308—

332 (1992).

J. W. Peng and G. Wagner, Mapping of the spectral densities of N-H bo8&2.
motions in Eglin c using heteronuclear relaxation experim@&itehemistry
31,8571-8586 (1992). 33
N. A. Farrow, O. Zhang, A. Szabo, D. A. Torchia, and L. E. Kay, Spectral
density function mapping usingN relaxation data exclusively. Biomol.
NMR®6, 153-162 (1995).

. C. Renner, R. Baumgartner, A. A. Noegel, and T. A. Holak, Back-
bone dynamics of the CDK inhibitor p¥4d studied by NMR!®N re-
laxation experiments at two field strength. Mol. Biol. 283, 221-229
(1998).

. D. Fushman, N. Tjandra, and D. Cowburn, An approach to direct de-
termination of protein dynamics fro®N NMR relaxation at multi-
ple fields, independent of variab®N chemical shift anisotropy and
chemical exchange contributiond. Am. Chem. Socl21, 8577-8582
(1999).

. M. Zweckstetter and T. A. Holak, An adiabatic multiple spin-echo pulse
sequence: Removal of systematic errors due to pulse imperfections and of
resonance propertied. Magn. Resorl33,134-147 (1998).

. A. Abragam, “Principles of Nuclear Magnetism,” Clarendon, Oxford, 1961.

. V. Y. Orekhov, K. V. Pervushin, D. M. Korzhnev, and A. S. Arsieniev,
Backbone dynamics of (1-71)- and (1-36)-bactrioopsin studied by two-
dimensional’H-'®N NMR spectroscopyJ. Biomol. NMR6, 113-122
(1995).

. D. M. LeMaster, NMR relaxation order parameter analysis of the dynamics
of protein side chainsl. Am. Chem. So0421,1726-1742 (1999).

. G. Barbato, M. Ikura, L. E. Kay, R. W. Pastor, and A. Bax, Backbone dy-
namics of calmodulin studied ByN relaxation using inverse detected two-
dimensional NMR spectroscopy: The central helix is flexiBiechemistry
31,5269-5278 (1992).



	INTRODUCTION
	THEORY
	COMPUTER SIMULATIONS
	RESULTS
	TABLE 1
	FIG. 1.
	FIG. 2.
	TABLE 2
	FIG. 3.

	DISCUSSION
	CONCLUSIONS
	ACKNOWLEDGMENT
	REFERENCES

